The Down to date Guide To 300-135 vce

Proper study guides for Up to the immediate present Cisco Troubleshooting and Maintaining Cisco IP Networks (TSHOOT) certified begins with Cisco 300 135 tshoot pdf preparation products which designed to deliver the Practical tshoot 300 135 questions by making you pass the 300 135 tshoot test at your first time. Try the free tshoot 300 135 demo right now.

Q31. - (Topic 19) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1.

After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

Use the supported commands to isolate the cause of this fault and answer the following question.

What is the solution to the fault condition?

A. Under the interface SerialO/0/0.23 configuration enter the ipv6 ospf 6 area 0 command.

B. Under the interface SerialO/0/0.12 configuration enter the ipv6 ospf 6 area 12 command.

C. Under ipv6 router ospf 6 configuration enter the network 2026::1:/122 area 0 command.

D. Under ipv6 router ospf 6 configuration enter the no passive-interface default command

Answer: A

Explanation:

As explained in question one of this ticket, we can then see that OSPFv3 has not been enabled on the interface to R3:

So the problem is with R2, related to IPV6 Routing, and the fix is to enable the "ipv6 ospf 6 area 0"command under the serial 0/0/0.23 interface. We need to enable this interface for area 0 according to the topology diagram.

Topic 20, Ticket 15: IPv6 Routing Issue 2

Topology Overview (Actual Troubleshooting lab design is for below network design)

-Client Should have IP 10.2.1.3

-EIGRP 100 is running between switch DSW1 & DSW2

-OSPF (Process ID 1) is running between R1, R2, R3, R4

-Network of OSPF is redistributed in EIGRP

-BGP 65001 is configured on R1 with Webserver cloud AS 65002

-HSRP is running between DSW1 & DSW2 Switches

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.

This network consists of four routers, two layer 3 switches and two layer 2 switches.

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.

ASW1 and ASW2 are layer 2 switches.

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.

The client workstations receive their IP address and default gateway via R4's DHCP server.

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices.

You will be presented with a series of trouble tickets related to issues introduced during these configurations.

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.

Each ticket has 3 sub questions that need to be answered & topology remains same.

Question-1 Fault is found on which device,

Question-2 Fault condition is related to,

Question-3 What exact problem is seen & what needs to be done for solution

===============================================================================


Q32. - (Topic 13) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

Which is the solution to the fault condition? 

A. Under the EIGRP process, delete the redistribute ospf 1 route-map OSPF_ to_ EIGRP command and enter the redistribute ospf 1 route-map OSPF - > EIGRP command. 

B. Under the EIGRP process, delete the redistribute ospf 1 route-map OSPF_ to_ EIGRP command and enter the redistribute ospf 6 metric route-map OSPF - > EIGRP command. 

C. Under the OSPF process, delete the redistribute eigrp10 subnets route-map EIGPR ->OSPF command and enter the redistribute eigrp10 subnets route-map OSPF - > EIGRP command. 

D. Under the OSPF process, delete the redistribute eigrp10 subnets route-map EIGPR ->OSPF command and enter the redistribute eigrp10 subnets route-map EIGPR - > OSPF command. 

E. Under the EIGRP process, delete the redistribute ospf 1 route-map OSPF _to_ EIGRP command and enter redistribute ospf 1 metric 100000 100 100 1 15000 route_ map OSPF _to _EIGRP command 

Answer:

Explanation: 

On R4, in the redistribution of EIGRP routing protocol, we need to change name of route-map to resolve the issue. It references route-map OSPF_to_EIGRP but the actual route map is called OSPF->EIGRP. 

Topic 14, Ticket 9 : EIGRP AS number 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

ipconfig ----- Client will be receiving IP address 10.2.1.3 

. From Client PC we can ping 10.2.1.254 

. But IP 10.2.1.3 is not able to ping from R4, R3, R2, R1 . 

. This clearly shows problem at R4 Kindly check routes in EIGRP there are no routes of eigrp. 

. Check the neighborship of EIGRP on R4; there are no neighbor seen from DSW1 & DSW2 check the running config of EIGRP protocol it shows EIGRP AS 1 process…. Now check on DSW1 & DSW2 

On DSW1 only one Eigrp neighbour is there with DSW2 but its not with R4… 

. From above snapshot & since R4 has EIGRP AS number 1 due to which neighbour is not happening. 

. Change required: On R4, IPV4 EIGRP Routing, need to change the EIGRP AS number from 1 to 10 since DSW1 & DSW2 is configured to be in EIGRP AS number 10. 


Q33. - (Topic 10) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. BGP 

B. NTP 

C. IP NAT 

D. IPv4 OSPF Routing 

E. IPv4 OSPF Redistribution 

F. IPv6 OSPF Routing 

G. IPv4 layer 3 security 

Answer:

Explanation: 

On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. 

Topic 11, Ticket 6 : R1 ACL 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistribution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client is unable to ping IP 209.65.200.241… 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

. Ipconfig ----- Client will be receiving IP address 10.2.1.3 

. IP 10.2.1.3 will be able to ping from R4 , R3, R2, R1 

. Look for BGP Neighbourship 

. Sh ip bgp summary ----- State of BGP will be in active state. This means connectivity issue between serial 

. Check for running config. i.e sh run --- over here check for access-list configured on interface as BGP is down (No need to check for NAT configuration as its configuration should be right as first need to bring BGP up) 

. In above snapshot we can see that access-list of edge_security on R1 is not allowing wan IP network 

. Change required: On R1, we need to permit IP 209.65.200.222/30 under the access list. 


Q34. - (Topic 11) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. BGP 

B. NTP 

C. IP NAT 

D. IPv4 OSPF Routing 

E. IPv4 OSPF Redistribution 

F. IPv6 OSPF Routing 

G. IPv4 layer 3 security 

Answer:

Explanation: 

On R1, we need to permit IP 209.65.200.222/30 under the access list. 


Q35. - (Topic 18) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolate the cause of this fault and answer the following question. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP 


Q36. - (Topic 16) 

The implementations group has been using the test bed to do a ‘proof-of-concept'. After several changes to the network addressing, routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2(2026::102:1). 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to fault condition? 

A. Under the interface Serial 0/0/0.23 configuration enter the ipv6 ospf 6 area 0 command. 

B. Under the interface Serial0/0/0.12 configuration enter the ipv6 ospf 6 area 12 command. 

C. Under ipv6 router ospf 6 configuration enter the network 2026::1:/122 area 0 command. 

D. Under ipv6 router ospf 6 configuration enter no passive-interface default command. 

Answer:

Explanation: 

On R2, IPV6 OSPF routing, configuration is required to add ipv6 ospf 6 area 0 under interface serial 0/0/0.23 


Q37. - (Topic 15) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. Under the global configuration mode enter no access-list 10 command. 

B. Under the global configuration mode enter no access-map vlan 10 command. 

C. Under the global configuration mode enter no vlan access-map test1 10 command. 

D. Under the global configuration mode enter no vlan filter test1 vlan-list 10 command. 

Answer:

Explanation: 

On DSW1, VALN ACL, Need to delete the VLAN access-map test1 whose action is to drop access-list 10; specifically 10.2.1.3 


Q38. - (Topic 9) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. BGP 

B. NTP 

C. IP NAT 

D. IPv4 OSPF Routing 

E. IPv4 OSPF Redistribution 

F. IPv6 OSPF Routing 

G. IPv4 layer 3 security 

Answer: A Explanation: 

On R1 under router the BGP process Change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 


300-135 Royal Pack Testengine pdf

100% Actual & Verified — 100% PASS

Unlimited access to the world's largest Dumps library!

Free 300-135 Download